Skip to content

IDE+A

Institute for Data Science, Engineering, and Analytics

  • Startseite
  • KI Forschungscluster
  • ECIP at ACM GECCO
  • IDE+A THK-Webseite
  • Promotion/PhD
  • THK-KIplus
  • Artificial and Engineering Intelligence Lab (AEIL)
  • SPOT

Category: PINNs

Reading Recommendation: On the generalization of PINNs outside the training domain and the hyperparameters influencing it

The article examines the generalization of Physics-informed neural networks (PINNs) beyond training domains, emphasizing predictive accuracy and adherence to physical principles. It challenges the role of overparametrization, suggesting it may promote overfitting rather than enhancing generalization in scientific machine learning.

AI, PINNs

Recent Posts

  • IDE+A Institut auf dem General Assembly Meeting des SHAPE-FUTURE Projekts in Riga
  • ICML (International Conference on Machine Learning): Rückblick von Noah Pütz
  • “Recent Trends and Perspectives in AI” by Julian Hatzky (Technical Lead, Prognos AG)
  • ICLR 2024 Review by Jens Brandt
  • Forschung live: KI im Rennsport

Recent Comments

No comments to show.

Archives

  • May 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • August 2024
  • April 2024
  • March 2024

Categories

  • Artificial Intelligence
  • Artikel
  • Call for Papers
  • Conferences
  • Doktorandenkolloquium
  • Event
  • Gummersbach
  • Hyperparameter Tuning
  • Industrie
  • Jobs
  • Kooperation
  • Multiobjective Optimization
  • Online-Machine Learning
  • Optimization
  • PhD
  • PINNs
  • Recommendation
  • Research
  • Software
  • SPOT
  • TH Köln
  • Turbo Machinery
  • Uncategorized
  • Veröffentlichung
  • Workshop
Proudly powered by WordPress
Theme: Rebalance by WordPress.com.