The article examines the generalization of Physics-informed neural networks (PINNs) beyond training domains, emphasizing predictive accuracy and adherence to physical principles. It challenges the role of overparametrization, suggesting it may promote overfitting rather than enhancing generalization in scientific machine learning.
Interesting: Lecture Series in AI: “How Could Machines Reach Human-Level Intelligence?” by Yann LeCun
Yann LeCun’s lecture discusses the limitations of current AI, emphasizing the need for a cognitive architecture with a predictive world model. This model uses a Joint Embedding Predictive Architecture (JEPA) to enable planning and understanding, aiming for human-level intelligence.
New arXiv Preprint: Enhancing Feature Selection and Interpretability in AI Regression Tasks Through Feature Attribution
The article explores the integration of Explainable Artificial Intelligence (XAI) in enhancing deep learning performance. Focusing on regression problems, it introduces a feature selection pipeline using Integrated Gradients and k-means clustering, applied to blade vibration analysis in turbo machinery development.
TH Köln erhält einen HPC Rechencluster
Der TH-KIplus Cluster an der TH Köln wird aus Gummersbach und Leverkusen betrieben, bietet Hochleistungsrechnen für KI-Anwendungen und startet im Sommersemester 2025. Momentan läuft eine Testphase zur Nutzer- und Softwareverwaltung sowie zur Kostenabrechnung.
PhD in Time Complexity Analysis of Bio-Inspired Computation
Department of Computer Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China Introduction Applications are invited for…
Schifffahrt muss sauberer werden – Artikel in den vdi nachrichten
Die VDI-Nachrichten berichten am 4. Oktober 2024 über den Einsatz von KI in der Schifffahrt zur Erreichung von „Zero Emission“. Thomas Hildebrandt erklärt, dass KI die Verarbeitungszeit für CFD-Simulationen von 100 Stunden auf 20 Sekunden reduziert.
spotpython-0.16.9 released
Spotpython-0.16.9 introduces two key features: a new function, viz_net, for visualizing linear network architectures, and extract_linear_dims, which retrieves input and output dimensions of Linear layers in PyTorch models. An illustrative example demonstrates the implementation of viz_net alongside model initialization and configuration using the Diabetes dataset.
Google Scholar Alert: 100th Citation of the Article „A new taxonomy of global optimization algorithms“
Google Scholar claims, that the article, which laid the cornerstone of Dr. Jörg Stork’s PhD thesis, has 100 citations! I…
More than 100 000 Accesses: Hyperparameter Tuning for Machine and Deep Learning
The Open Access Book „Hyperparameter Tuning for Machine and Deep Learning with R“ has surpassed 100k accesses and provides practical guidance for R, focusing on hyperparameter tuning in ML and DL. An updated Python version is forthcoming.
KI-Sensoren im Rennsport
Das internationale Kooperationsprojekt ShapeFuture fokussiert sich auf die Weiterentwicklung hochautomatisierter Fahrzeuge und integriert viele Motorsport-Innovationen. Promovenden Jens Brandt und Noah Pütz von der TH Köln forschen unter Prof. Dr. Thomas Bartz-Beielstein zu KI-Sensoren im Rennsport, unterstützt von 42 Partnern aus 12 Ländern.